Solutions to Kirchhoff equations with critical exponent
نویسندگان
چکیده
منابع مشابه
Positive solutions for asymptotically periodic Kirchhoff-type equations with critical growth
In this paper, we consider the following Kirchhoff-type equations: $-left(a+bint_{mathbb{R}^{3}}|nabla u|^{2}right)Delta u+V(x) u=lambda$ $f(x,u)+u^{5}, quad mbox{in }mathbb{R}^{3},$ $u(x)>0, quad mbox{in }mathbb{R}^{3},$ $uin H^{1}(mathbb{R}^{3}) ,$ where $a,b>0$ are constants and $lambda$ is a positive parameter. The aim of this paper is to study the existence of positive ...
متن کاملElliptic Equations with Critical Exponent
where As3 is the Laplace-Beltrami operator on B' . Let 0* C (0, 7r) be the radius o r B ' , i.e., the geodesic distance of the North pole to OBq The values 0 < 0* < 7r/2 correspond to a spherical cap contained in the Northern hemisphere, 0* -7r/2 corresponds to B ~ being the Northern hemisphere and the values rr/2 < 0* < ~c correspond to a spherical cap which covers the Northern hemisphere. Fin...
متن کاملpositive solutions for asymptotically periodic kirchhoff-type equations with critical growth
in this paper, we consider the following kirchhoff-type equations: $-left(a+bint_{mathbb{r}^{3}}|nabla u|^{2}right)delta u+v(x) u=lambda$ $f(x,u)+u^{5}, quad mbox{in }mathbb{r}^{3},$ $u(x)>0, quad mbox{in }mathbb{r}^{3},$ $uin h^{1}(mathbb{r}^{3}) ,$ where $a,b>0$ are constants and $lambda$ is a positive parameter. the aim of this paper is to study the existence of positive ...
متن کاملPeriodic solutions of forced Kirchhoff equations
We consider Kirchhoff equations for vibrating strings and elastic membranes under the action of an external forcing of period 2π/ω and small amplitude ε. We prove existence, regularity and local uniqueness of 2π/ω-periodic solutions of order ε by means of a Nash-Moser iteration scheme; the results hold for parameters (ω, ε) in a Cantor-like set which has asymptotically full measure for ε→ 0.
متن کاملPositive Solutions to Quasilinear Equations Involving Critical Exponent on Perturbed Annular Domains
In this paper we study the existence of positive solutions for the problem −∆pu = u ∗−1 in Ω and u = 0 on ∂Ω where Ω is a perturbed annular domain (see definition in the introduction) and N > p ≥ 2. To prove our main results, we use the Concentration-Compactness Principle and variational techniques.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Arab Journal of Mathematical Sciences
سال: 2016
ISSN: 1319-5166
DOI: 10.1016/j.ajmsc.2015.04.001